Clustering hidden Markov models with variational HEM
نویسندگان
چکیده
The hidden Markov model (HMM) is a widely-used generative model that copes with sequential data, assuming that each observation is conditioned on the state of a hidden Markov chain. In this paper, we derive a novel algorithm to cluster HMMs based on the hierarchical EM (HEM) algorithm. The proposed algorithm i) clusters a given collection of HMMs into groups of HMMs that are similar, in terms of the distributions they represent, and ii) characterizes each group by a “cluster center”, that is, a novel HMM that is representative for the group, in a manner that is consistent with the underlying generative model of the HMM. To cope with intractable inference in the E-step, the HEM algorithm is formulated as a variational optimization problem, and efficiently solved for the HMM case by leveraging an appropriate variational approximation. The benefits of the proposed algorithm, which we call variational HEM (VHEM), are demonstrated on several tasks involving time-series data, such as hierarchical clustering of motion capture sequences, and automatic annotation and retrieval of music and of online hand-writing data, showing improvements over current methods. In particular, our variational HEM algorithm effectively leverages large amounts of data when learning annotation models by using an efficient hierarchical estimation procedure, which reduces learning times and memory requirements, while improving model robustness through better regularization.
منابع مشابه
Tech Report A Variational HEM Algorithm for Clustering Hidden Markov Models
The hidden Markov model (HMM) is a generative model that treats sequential data under the assumption that each observation is conditioned on the state of a discrete hidden variable that evolves in time as a Markov chain. In this paper, we derive a novel algorithm to cluster HMMs through their probability distributions. We propose a hierarchical EM algorithm that i) clusters a given collection o...
متن کاملThe variational hierarchical EM algorithm for clustering hidden Markov models
In this paper, we derive a novel algorithm to cluster hidden Markov models (HMMs) according to their probability distributions. We propose a variational hierarchical EM algorithm that i) clusters a given collection of HMMs into groups of HMMs that are similar, in terms of the distributions they represent, and ii) characterizes each group by a “cluster center”, i.e., a novel HMM that is represen...
متن کاملIntroducing Busy Customer Portfolio Using Hidden Markov Model
Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...
متن کاملVariational Bayesian Analysis for Hidden Markov Models
The variational approach to Bayesian inference enables simultaneous estimation of model parameters and model complexity. An interesting feature of this approach is that it appears also to lead to an automatic choice of model complexity. Empirical results from the analysis of hidden Markov models with Gaussian observation densities illustrate this. If the variational algorithm is initialised wit...
متن کاملCollapsed Variational Bayesian Inference for Hidden Markov Models
Approximate inference for Bayesian models is dominated by two approaches, variational Bayesian inference and Markov Chain Monte Carlo. Both approaches have their own advantages and disadvantages, and they can complement each other. Recently researchers have proposed collapsed variational Bayesian inference to combine the advantages of both. Such inference methods have been successful in several...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 15 شماره
صفحات -
تاریخ انتشار 2014